Enterprise-grade volatility forecasting system with GARCH family models, realized volatility estimators, ML-based prediction, and real-time risk metrics.
Production-ready volatility forecasting framework combining classical econometric models (GARCH family) with modern machine learning approaches for accurate volatility prediction and risk management.
- GARCH Family Models — GARCH(1,1), EGARCH, GJR-GARCH, FIGARCH, DCC-GARCH with automatic model selection
- Realized Volatility — RV, Bipower Variation, Realized Kernels, Realized GARCH
- Implied Volatility — Black-Scholes IV extraction, volatility surface interpolation
- ML Models — LSTM networks, HAR-RV, Random Forest for volatility prediction
- Risk Metrics — VaR, CVaR, volatility cones, tail risk analysis
- Real-Time API — FastAPI with WebSocket streaming for live volatility updates
- Trading Integration — Position sizing, volatility-adjusted stop losses
src/
├── models/
│ ├── garch_models.py # GARCH, EGARCH, GJR-GARCH, FIGARCH, DCC-GARCH
│ └── ml_volatility.py # LSTM, HAR-RV, Random Forest models
├── estimators/
│ ├── realized_volatility.py # RV, BPV, Realized Kernels
│ └── implied_volatility.py # Black-Scholes IV, volatility surface
├── core/
│ └── volatility_system.py # Unified forecasting system
├── api/
│ └── volatility_api.py # FastAPI + WebSocket endpoints
├── utils/
│ ├── risk_metrics.py # VaR, CVaR, volatility cones
│ └── trading_integration.py # Position sizing, risk management
└── validation/
└── volatility_validator.py # Model validation & backtesting
The framework implements the complete GARCH family with automatic model selection:
| Model | Use Case | Key Feature |
|---|---|---|
| GARCH(1,1) | Baseline volatility clustering | Standard conditional heteroskedasticity |
| EGARCH | Asymmetric volatility | Leverage effect modeling |
| GJR-GARCH | News impact asymmetry | Threshold effects for positive/negative shocks |
| FIGARCH | Long memory | Fractionally integrated for persistent volatility |
| DCC-GARCH | Multi-asset | Dynamic conditional correlations |
from ml_volatility_forecasting import GARCHModelSelector
selector = GARCHModelSelector()
best_model = selector.select_best_model(
returns_data,
candidates=["garch", "egarch", "gjr-garch", "figarch"],
criterion="bic" # AIC, BIC, or log-likelihood
)
forecast = best_model.forecast(horizon=10)Built-in risk analysis tools:
from ml_volatility_forecasting import RiskMetrics
risk = RiskMetrics(returns_data)
# Value at Risk
var_95 = risk.calculate_var(confidence=0.95, method="historical")
var_99 = risk.calculate_var(confidence=0.99, method="parametric")
# Conditional VaR (Expected Shortfall)
cvar = risk.calculate_cvar(confidence=0.95)
# Volatility cones
cones = risk.volatility_cones(windows=[7, 14, 30, 60, 90])Combine classical and ML approaches:
from ml_volatility_forecasting import LSTMVolatilityModel, HARRVModel
# LSTM for sequence modeling
lstm = LSTMVolatilityModel(
lookback=60,
hidden_size=128,
num_layers=2
)
lstm.fit(training_data)
prediction = lstm.predict(horizon=5)
# HAR-RV (Heterogeneous Autoregressive Realized Volatility)
har = HARRVModel()
har.fit(realized_vol_data)FastAPI server with WebSocket streaming:
# Start the API server
# uvicorn ml_volatility_forecasting.api.volatility_api:app --host 0.0.0.0 --port 8000
# REST endpoints:
# GET /api/v1/forecast/{symbol}?horizon=10&model=egarch
# GET /api/v1/risk-metrics/{symbol}
# GET /api/v1/volatility-surface/{symbol}
# WS /ws/volatility-streampip install -e .
# With GPU support
pip install -e ".[gpu]"
# With quantitative finance tools
pip install -e ".[quant]"
# Development
pip install -e ".[dev]"Set environment variables for external services:
export DATABASE_URL="postgresql://localhost/volatility"
export REDIS_URL="redis://localhost:6379"- Econometrics: arch, statsmodels, pykalman
- ML: PyTorch, TensorFlow, scikit-learn
- API: FastAPI, WebSockets, uvicorn
- Data: pandas, NumPy, SciPy, Numba (JIT)
- Storage: PostgreSQL, Redis, ClickHouse
- Monitoring: Prometheus, structlog
MIT License — see LICENSE for details.
For questions and support, please open an issue on GitHub.